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Role of the ocean and the sea-
ice in the climate system

u The ocean and the sea-ice (O+SI) are 2 
components of the climate system.

u O+SI contain large spatial and 
temporal scales (>YEAR) that are 
particularly relevant for climate studies.

u O+SI are a source of predictability for 
the next decade.

ocean/sea ice
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Credits: Gettelman and Rood, 2016, Meincke und Latif, 1995, Dirmeyer



First source of knowledge: 
observations

Sea-Ice 
thickness
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First source of knnowledge: 
numerical models
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Comparison

u Sparse
u Noisy

• Biased
• Low-resolution (for climate studies)
• Due to the chaotic nature, model 

will diverge from the reality after 
some time

Observations Numerical model
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Merging model/observation: data 
assimilation

“The very best way to make a forecast out of a numerical 
model and a set of observations.”

Observations Numerical model“Analysis” from 
data assimiation
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Some achievements of DA
Horizon of prediction (in days) of the weather from ECMWF

7



What data assimilation does and 
does not?

u Good at reconstructing initial conditions for forecast
u Handle noisy and sparse observations
u Give an accurate estimation of the uncertainty

BUT:
u Does not “learn”. The model is not ”smarter” from the observations
u Some information contained in the observations is lost. (e.g. if 

observations are at a higher resolution than the model).
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Machine learning to the rescue?

Earth system observations Earth system models

Data assimilation

Learn from from observations and apply to observations (data-driven model, now-
casting, inference, interpolation, …)
Learn from model and apply to model (emulators, improved parametrization, …)
Learn from observations and apply to model (post-processing bias correction, …)
Learn from model and apply to observations (inference of new variables, 
downscaling, …)
Learn at the intersection between observation and model via data assimilation 
(improved parametrization, extend data assimilation, …)
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One application: extend data assimilation

Observation (high-resolution)

Model output (lower resolution)
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Motivation and method

Low-res model
(run n times) DA

High-res 
observations

EnKF low-res

Computational cost Low

Ensemble size Big

Observation error High

High-res processes Poorly resolved

The ensemble Kalman filter (low-resolution):

Low-res initial conditions Low-res forecast Low-res corrected
forecast (analysis)
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Motivation and method

high-res model
(run n times) DA

High-res 
observations

EnKF low-res EnKF high-res

Computational cost Low High

Ensemble size Big Small

Observation error High Low

High-res processes Poorly resolved Resolved

The ensemble Kalman filter (high-resolution):

High-res initial conditions High-res forecast High-res corrected
forecast (analysis)
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Motivation and method

Low-res model
(run n times)

DA

High-res 
observations

EnKF low-res EnKF high-res SRDA

Computational cost Low High Low

Ensemble size Big Small Big

Observation error High Low Low

High-res processes Poorly resolved Resolved Emulated

Super-resolution data assimilation (SRDA)

Downscaling Upscaling

Barthélémy et al., 2021 (in review)
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Setup a numerical experiment

The model
A quasi-geostrophic model (represents the 
motion of the ocean surface)

The observations
u Synthetic observations: Produce by 

high-resolution model (we know 
the expected result!)

u Mimic satellite altimeter 
observations

u Sparse and noisy

Downscaling
u A simple cubic spline interpolation

u A neural network trained using a 
free high-res simulation
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Downscaling performance
Neural network Simple interpolation

Red contours: true high-
resolution field
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Correction of model error

Eddy motion

True eddy position

Interpolated eddy

Error of the low-res. model
u Eddy propagation are too slow in the low-res model

u The neural network has learnt this displacement 
error.
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Performance of SRDA

No interpolation No interpolation

Using a high-resolution model

Using a low-resolution model

Error reduction 
Vs simple 
interpolation

Computing cost
reduction Vs
high-resolution
model
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Have we learned something? 19



Machine learning to the rescue?

Earth system observations Earth system models

Data assimilation

Learn from from observations and apply to observations (data-driven model, now-
casting, inference, interpolation, …)
Learn from model and apply to model (emulators, improved parametrization, …)
Learn from observations and apply to model (post-processing bias correction, …)
Learn from model and apply to observations (inference of new variables, 
downscaling, …)
Learn at the intersection between observation and model via data assimilation 
(improved parametrization, extend data assimilation, …)
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Cases of applications
21

Data availability and coverage
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Conclusions
u Machine learning can complement model and observations to improve our 

understanding and the prediction of the ocean/sea-ice system.
u In particular, it can be very efficient to enhance under-represented scales in model 

and observations.
u More application in the review article: “Bridging observation, theory and numerical 

simulation of the ocean using Machine Learning”.
https://doi.org/10.1088/1748-9326/ac0eb0

Earth system observations Earth system models

Data assimilation
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https://doi.org/10.1088/1748-9326/ac0eb0


Challenging questions
u Uncertainty estimate (natural in any 

DA framework)
u Non-autonomous systems (e.g. in a 

global warming context)
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Contact me: julien.brajard@nersc.no
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https://github.com/nansencenter/ml-
crashcourse/blob/main/L96_demonstrator.ipynb
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