Quelles échelles océaniques représenter pour modéliser le climat des latitudes moyennes ?

Guillaume Lapeyre

Laboratoire de Météorologie Dynamique/IPSL, Paris

Le système océan-atmosphère : une large gamme d'échelles

Variabilité atmosphérique aux latitudes moyennes

- 1. Echelle des tempêtes : temps météorologique
 - ~ 1000 km, 1 à 6 jours \Rightarrow haute fréquence
- 2. Echelle des rails des tempêtes
 - ~ 10000 km, 10 jours à 1 mois \Rightarrow variabilité intra-saisonnière
 - Interactions courant-jet d'altitude avec tempêtes
- 3. Variabilité basse fréquence : climat
 - ~ 10000 km, saisons, multi-décénal
 - peu affectée par la variabilité "intrinsèque" de l'atmosphère
 - liée à des forçages externes (océan, tropiques, stratosphère)

Variabilité océanique aux latitudes moyennes

- 1. Echelle de la circulation générale
 - Gyres océaniques, grands courants (Gulf Stream, Kuroshio)
 - ~ 10000 km, saisons, multi-décennal
- 2. Echelle des tourbillons océaniques
 - ~ 200 km, semaines à mois
- 3. Echelle des filaments entre les tourbillons
 - ~ 10 km, quelques jours

Deux milieux / deux mécanismes

Effet mécanique

$$\frac{d\boldsymbol{u_{oce}}}{dt} = \frac{1}{\rho} \frac{\partial \boldsymbol{\tau}}{\partial z} + \dots$$

 τ tension de vent

Effet thermodynamique

$$\frac{dT_{atm}}{dt} = Q$$

Q Echange de chaleur air-mer

- Le premier effet met en mouvement l'océan
- Le second effet induit un changement de circulation atmosphérique

- Couche de mélange océanique : \sim 100m
- Couche limite atmosphérique : ~ 1000m

Interactions océanatmosphère à grande échelle

Réponse à une anomalie de température océanique

- Anomalie de 2° K sur une région de 1000×1000 km
- Propagation sur tout l'hémisphère
- Réponse faible à un forçage fort

(Peng et al. 1997)

Variabilité atmosphérique forcée par l'océan

Rapport $V_{\rm forc\acute{e}e}/V_{\rm interne}$ (en %) de variance inter-annuelle de la pression de surface

- Aux tropiques, 60% de la variabilité atmosphérique est attribuable à l'océan
- Seulement 30% aux latitudes moyennes

(Kushnir et al. 2002)

Variabilités atmosphérique et océanique

$$\frac{\partial \, TSO}{\partial t} = \underbrace{Q}_{\text{flux air-mer}} + \underbrace{D_o}_{\text{dynamique}} \\ \underbrace{\frac{\partial \, T_{atm}}{\partial t}} = -Q + \underbrace{D_{atm}}_{\text{dynamique}} \\ \underbrace{\text{dynamique}}_{\text{atmosphérique}} \\ \underbrace{\frac{\text{Lagged-covariance:}}{\text{50^{\circ}N}} \langle \mathbf{TSO}(\mathbf{t} + \tau) \mathbf{Q}(\mathbf{t}) \rangle}_{\text{50^{\circ}N}} \\ \underbrace{\frac{\partial \, T_{atm}}{\partial t}} = -Q + \underbrace{D_{atm}}_{\text{dynamique}} \\ \underbrace{\frac{\partial \, T_{atm}}{\partial t}}_{\text{dynamique}} \\ \underbrace{\frac{\partial \, T_{atm}}{$$

- Signe opposé : la TSO répond au flux de chaleur
 - Système forcé par la variabilité atmosphérique
 - Centre du bassin Atlantique
- Même signe : le flux de surface est corrélé à la TSO
 - Système forcé par la variabilité océanique
 - Région du Gulf Stream

Rail des tempêtes et front océanique

(Minobe et al. 2008)

(modèle Quasi-Géostrophique)

Deremble et al. (2012)

couleurs : vent à 200hPa, contours : TSO

Effets de l'océan sur la couche limite atmosphérique

 \blacksquare Variabilité spatiale des nuages en lien avec les échelles océaniques $\sim 200 {\rm km}$ (Young et Sikora, 2003)

2 mécanismes

Ajustement de pression (Lindzen et Nigam, 1987)

WARM AIR	COLD AIR	$\frac{\partial P}{\partial z} = -\rho g = \frac{\rho_0 g}{\theta_0} \theta$		
Low pressure	High pressure	TSO chaude température basse chaude pression		
WARM SST	COLD SST	TSO froide température haute froide pression		

2 mécanismes

Ajustement de pression (Lindzen et Nigam, 1987)

WARM AIR	COLD AIR	$\frac{\partial P}{\partial z} = -\rho g = \frac{\rho_0 g}{\theta_0} \theta$		
Low pressure	High pressure	TSO chaude	température chaude	basse pression
WARM SST	COLD SST	TSO froide	température froide	haute pression

Mélange de quantité de mouvement (Wallace et al. 1989)

Signature des anomalies de TSO sur la couche limite

Les fines échelles océaniques ont une empreinte dans l'atmosphère

Effets des tourbillons océaniques sur le rail des tempêtes

Simulation idéalisée

Modèle atmosphérique réaliste WRF:

- Rail des dépressions idéalisé
- Canal périodique réentrant en x
- Domaine $9000 \times 9000 \times 20$ km
- Résolution : 18km (horizontale) et 80 niveaux verticaux
- Paramétrisations classiques des flux air-mer, de la couche limite atmosphérique, de la convection, de la microphysique des nuages

Effet des tourbillons océaniques : 2 simulations

- Front océanique
- Même moyenne zonale de TSO entre CONTROL et EDDY
- Partie tourbillonnaire venant d'une simulation océanique
- Champ de température de surface de l'océan fixe dans le temps

Champs instantanés de la simulation EDDY

Effet des tourbillons océaniques sur le rail des tempêtes

- Déplacement vers le pôle du courantjet
- Déplacement vers le pôle du rail des tempêtes
- Chauffage et humidification de l'atmosphère

(Foussard et al. 2019b)

Scenario

- Evaporation plus forte du côté chaud du front de TSO
- Transport de la vapeur d'eau vers le pôle et en altitude par les perturbations atmosphériques
- Dégagement de chaleur latente plus intense en altitude
- Modification du gradient méridien de température
- Modification du courant-jet à travers la relation du vent thermique

Flux de surface : évaporation

Evaporation plus forte en présence des tourbillons

$$E = C_d \underbrace{|\mathbf{u}|}_{|\overline{\mathbf{u}}| + \alpha TSO'} \left(\underbrace{q_{sat}(TSO)}_{q_{sat}(\overline{TSO})} - q_{atm} \right)$$

$$= A + B TSO' + C TSO'^2 + \dots$$

Non-linéarité des flux par rapport à la TSO

Dégagement de chaleur latente au sein des tempêtes

Composite du chauffage diabatique centré sur les tempêtes

- Contours : CONTROL
 - Le dégagement de chaleur latente a lieu au cœur des tempêtes
- Couleurs : EDDY-CONTROL
 - En présence des tourbillons océaniques, le chauffage est plus fort

Conclusions

Quelles échelles océaniques représenter ?

- Les anomalies de TSO de grande échelle (\sim 1000km) ont un effet faible sur le climat des latitudes moyennes
- Les fronts de TSO tels que le Gulf Stream ancrent le courant-jet au dessus d'eux

Les échelles de 100km (tourbillons océaniques) ont un effet sur

- la couche limite atmosphérique (vents, nuages, etc.)
- le rail des tempêtes
 - Importance des flux de surface
 - Mécanisme lié aux processus humides

Conclusions

Augmenter la résolution spatiale n'est pas l'unique solution pour améliorer les modèles

Dans les GCMs, nécessité d'avoir

- de forts gradients de TSO dans les régions comme le Gulf Stream
- des anomalies de TSO liées aux tourbillons océaniques
- une bonne représentation des processus humides
- de bons schémas de couche limite et des flux air-mer
 - ou paramétrisation de l'effet des tourbillons sur les flux :

$$u = \overline{u} + \alpha TSO'$$

utilisé par Renault et al. (2016) pour améliorer la représentation du Gulf Stream

Bibliographie

Bruno Deremble, Guillaume Lapeyre and Michael Ghil, 2012.

Atmospheric dynamics triggered by an oceanic SST front in a moist quasigeostrophic model

J. Atmos Sci., 69, 1617-1632.

Julien Lambaerts, Guillaume Lapeyre, Riwal Plougonven and Patrice Klein, 2013.

Atmospheric response to sea surface temperature mesoscale structures

J. Geophys. Res. Atmos., 118, 9611-9621.

Alexis Foussard, Guillaume Lapeyre et Riwal Plougonven, 2019a.

Response of surface wind divergence to mesoscale SST anomalies under different wind conditions J. Atmos. Sci., 76, 2065-2082.

Alexis Foussard, Guillaume Lapeyre et Riwal Plougonven, 2019b.

Storm tracks response to oceanic eddies in idealized atmospheric simulations.

J. Climate, 32, 445-463.